Successfully apply uniform encoding to all your categorical data in dataframe df.
Customizing your approach
Handling mixed data types with ColumnTransformer
Retain the granularity of your preprocessing by selectively applying LabelEncoder on different columns via ColumnTransformer:
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
ct = ColumnTransformer(
[('oh_enc', OneHotEncoder(sparse=False), ['col1', 'col3']), # performs magic on col1, col3 ('rest', 'passthrough', ['col2'])]) # col2 is 'un-magical' enoughtransformed = ct.fit_transform(df)
Building flexibility with custom encoders
Architect custom encoders for maximum control over already numeric attributes and data structure. Implement fit, transform, and fit_transform methods:
from sklearn.base import BaseEstimator, TransformerMixin
classCustomLabelEncoder(BaseEstimator, TransformerMixin):def__init__(self): self.encoders = {} # "I've got a lovely bunch of LabelEncoders..."deffit(self, X, y=None):for column in X.columns:
le = LabelEncoder()
le.fit(X[column])
self.encoders[column] = le # "...here they are standing in a row"return self
deftransform(self, X): X = X.copy() # "first principle in life: never leave a copy behind"for column in X.columns:
le = self.encoders[column]
X[column] = le.transform(X[column])
return X
deffit_transform(self, X, y=None):return self.fit(X, y).transform(X) # "...Cause fit and transform are always better together..."# Usage:custom_encoder = CustomLabelEncoder()
df_encoded = custom_encoder.fit_transform(df)
Maximizing efficiency with direct encoding
astype('category').cat.codes from Pandas can be an ace up your sleeve for larger categorical datasets:
df['col1'] = df['col1'].astype('category').cat.codes # "col1, you've just been officially labeled!"
Advanced encoding techniques
Ensuring accurate inverse transformation
To prevent loss in translation during inverse_transform, equip yourself with a dictionary-based LabelEncoder:
encoders = {col: LabelEncoder().fit(df[col]) for col in df.columns}
# "Talk about being in two places at the same time!"encoded_df = df.apply(lambda col: encoders[col.name].transform(col))
# "Life's a column, and then you DF.apply"# For inverse transformationdecoded_col = encoders['col1'].inverse_transform(encoded_df['col1'])
# "Oh, Col1, how I missed you!"
Handling missing values: a necessary evil
Missing values are like unwanted party crashers. Customize your encoders to handle them gracefully and maintain train validity of your data.
Optimizing your encoding solutions
Quick and easy encoding with pandas.get_dummies
When dealing with classification problems, convert categorical variables into dummy/indicator variables using the trusty pandas.get_dummies method:
encoded_df = pd.get_dummies(df, columns=['col1', 'col3'])
# "col1, col3 - you're about to have your binary moment of fame!"
Numerical preprocessing using RobustScaler
RobustScaler from scikit-learn gracefully handles outliers when scaling numerical columns:
from sklearn.preprocessing import RobustScaler
scaler = RobustScaler()
df['col2'] = scaler.fit_transform(df[['col2']])
# "I've just put some robust into your col2. You're welcome."
Non-repetitive encoding with mapping dictionary
Tired of repetitive labeling? Take control and deliver non-repetitive encoding using a mapping dictionary:
mappings = {c: {k: i for i, k inenumerate(df[c].unique(), 1)} for c in df.columns}
# "Because who likes repeating themselves?"df = df.apply(lambda col: col.map(mappings[col.name]))
# "Dear columns, prepare to be mapped!"