Explain Codes LogoExplain Codes Logo

Concatenate strings from several rows using Pandas groupby

python
pandas
groupby
dataframe
Nikita BarsukovbyNikita Barsukov·Feb 2, 2025
TLDR

The recipe for groupy then concatenate is simple with pandas. Use groupby then .agg(' '.join) on the DataFrame. Here's a hot serving of pandas:

import pandas as pd # Simulation of pandas in their natural habitat df = pd.DataFrame({'Group': ['A', 'A', 'B', 'B'], 'Data': ['Hello', 'World!', 'Foo', 'Bar']}) # Uniting pandas - No panda gets left alone result = df.groupby('Group')['Data'].agg(' '.join).reset_index() print(result)

The output we get:

  Group         Data
0     A  Hello World!
1     B      Foo Bar

The pandas were successfully united using groupby for organising and ' '.join for the reunion.

Advanced aggregation techniques

Stringing along multiple columns

More hands means lighter work. When dealing with multiple columns, agg() can ensure each gets the customised operation it deserves:

result = df.groupby(['Group', 'Column2']).agg({'Data': ' '.join, 'NumericColumn': 'sum'}).reset_index() # Sure, we're good at stringing along. But we can also sum! See?

Tidying up the joint

No one likes a messy joint (concatenated string!). Use str.replace() to tidy up unwanted characters:

result['Data'] = result['Data'].str.replace('[^\w\s]', '', regex=True) # Back in my day, strings were well-behaved...

Stay in formation, pandas!

Original dataframe formation is important! Make sure to call transform() to keep things tidy:

df['Concatenated'] = df.groupby('Group')['Data'].transform(lambda x: ' '.join(x)) # Transform and roll out, pandas!

Let's get statistical

When you have multiple statistics to calculate, let agg() work its magic with your groupby:

df.groupby('Group').agg({'Data': ' '.join, 'Numerical': ['mean', 'sum']}) # Who knew pandas could also be statisticians

Date-time groupings

Working with time-series data? Transform dates to datetime to group them in periods like month, quarter, or year:

df['Month'] = pd.to_datetime(df['Month']) grouped = df.groupby([df.Month.dt.to_period('M'), 'Group']) # Time-travel with pandas!

Handling numeric data within groups

When the group has non-text data, use the correct aggregation function such as mean, sum, min, max along with string concatenation:

result = df.groupby('Group').agg({'Data': ' '.join, 'Value': 'mean'}).reset_index() # Because pandas aren't just about texts. Numbers are friends, not food!

Keeping an eye on the final formation

Ensure the output structure aligns with your objective. Use df.drop_duplicates() and df.set_index() to get it just right:

result.drop_duplicates(inplace=True) # or result.set_index('Group', inplace=True) # Be like a panda: unique and organized!